Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(4): e11076, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628914

RESUMEN

Mountainous grasslands in South America, characterized by their high diversity, provide a wide range of contributions to people, including water regulation, soil erosion prevention, livestock feed provision, and preservation of cultural heritage. Prior research has highlighted the significant role of grazing in shaping the diversity and productivity of grassland ecosystems, especially in highly productive, eutrophic systems. In such environments, grazing has been demonstrated to restore grassland plant diversity by reducing primary productivity. However, it remains unclear whether these findings are applicable to South American mountainous grasslands, where plants are adapted to different environmental conditions. To address this uncertainty, we conducted a meta-analysis of experiments excluding livestock grazing to assess its impact on plant diversity and productivity across mountainous grasslands in South America. In alignment with studies in temperate grasslands, our findings indicated that herbivore exclusion resulted in increased aboveground biomass but reduced species richness and Shannon diversity. The effects of grazing exclusion became more pronounced with longer durations of exclusion; nevertheless, they remained resilient to various climatic conditions, including mean annual precipitation and mean annual temperature, as well as the evolutionary history of grazing. In contrast to results observed in temperate grasslands, the reduction in species richness due to herbivore exclusion was not associated with increased aboveground biomass. This suggests that the processes governing (sub)tropical grassland plant diversity may differ from those in temperate grasslands. Consequently, further research is necessary to better understand the specific factors influencing plant diversity and productivity in South American montane grasslands and to elucidate the ecological implications of herbivore exclusion in these unique ecosystems.

2.
Nature ; 628(8008): 563-568, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600379

RESUMEN

More than a quarter of the world's tropical forests are exploited for timber1. Logging impacts biodiversity in these ecosystems, primarily through the creation of forest roads that facilitate hunting for wildlife over extensive areas. Forest management certification schemes such as the Forest Stewardship Council (FSC) are expected to mitigate impacts on biodiversity, but so far very little is known about the effectiveness of FSC certification because of research design challenges, predominantly limited sample sizes2,3. Here we provide this evidence by using 1.3 million camera-trap photos of 55 mammal species in 14 logging concessions in western equatorial Africa. We observed higher mammal encounter rates in FSC-certified than in non-FSC logging concessions. The effect was most pronounced for species weighing more than 10 kg and for species of high conservation priority such as the critically endangered forest elephant and western lowland gorilla. Across the whole mammal community, non-FSC concessions contained proportionally more rodents and other small species than did FSC-certified concessions. The first priority for species protection should be to maintain unlogged forests with effective law enforcement, but for logged forests our findings provide convincing data that FSC-certified forest management is less damaging to the mammal community than is non-FSC forest management. This study provides strong evidence that FSC-certified forest management or equivalently stringent requirements and controlling mechanisms should become the norm for timber extraction to avoid half-empty forests dominated by rodents and other small species.


Asunto(s)
Certificación , Agricultura Forestal , Bosques , Mamíferos , Animales , África Occidental , Biodiversidad , Peso Corporal , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Elefantes , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Agricultura Forestal/normas , Gorilla gorilla , Mamíferos/anatomía & histología , Mamíferos/clasificación , Mamíferos/fisiología , Fotograbar , Roedores , Masculino , Femenino
3.
Sci Rep ; 12(1): 5960, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395860

RESUMEN

Despite increasing attention for relationships between species richness and ecosystem services, for tropical forests such relationships are still under discussion. Contradicting relationships have been reported concerning carbon stock, while little is known about relationships concerning timber stock and the abundance of non-timber forest product producing plant species (NTFP abundance). Using 151 1-ha plots, we related tree and arborescent palm species richness to carbon stock, timber stock and NTFP abundance across the Guiana Shield, and using 283 1-ha plots, to carbon stock across all of Amazonia. We analysed how environmental heterogeneity influenced these relationships, assessing differences across and within multiple forest types, biogeographic regions and subregions. Species richness showed significant relationships with all three ecosystem services, but relationships differed between forest types and among biogeographical strata. We found that species richness was positively associated to carbon stock in all biogeographical strata. This association became obscured by variation across biogeographical regions at the scale of Amazonia, resembling a Simpson's paradox. By contrast, species richness was weakly or not significantly related to timber stock and NTFP abundance, suggesting that species richness is not a good predictor for these ecosystem services. Our findings illustrate the importance of environmental stratification in analysing biodiversity-ecosystem services relationships.


Asunto(s)
Ecosistema , Bosques , Biodiversidad , Carbono , Árboles
4.
Sci Total Environ ; 771: 144647, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33736177

RESUMEN

Humid tropical forests are increasingly exposed to devastating wildfires. Major efforts are needed to prevent fire-related tipping points and to enable the effective recovery of fire-affected areas. Here, we provide a synthesis of the most common forest restoration strategies, thereby focusing on post-fire forest dynamics in the humid tropics. A variety of restoration strategies can be adopted in restoring humid tropical forests, including natural regeneration, assisted natural regeneration (i.e. fire breaks, weed control, erosion control, topsoil replacement, peatland rewetting), enrichment planting (i.e. planting nursery-raised seedlings, direct seeding) and commercial restoration (i.e. plantation forests, agroforestry). Our analysis shows that while natural regeneration can be effective under favourable ecological conditions, humid tropical forests are often ill-adapted to fire, and therefore less likely to recover unassisted after a wildfire event. Active restoration practices may be more effective, but can be costly and challenging to implement. We also identify gaps in knowledge needed for effective restoration of humid tropical forests after fire, hereby taking into account the ecosystems and socio-economic conditions in which these fires occur. We suggest to incorporate fire severity in future studies, to better understand and predict post-fire ecosystem responses. In addition, as fire poses a recurring and intensifying threat throughout the recovery process, more emphasis should be placed on post-restoration management and the prevention of fire throughout the different phases of the restoration process. Furthermore, as tropical wildfires are increasing in scale, establishing collaborative capacity and setting priorities for efficient resource allocation should become a major priority for restoration practitioners in the humid tropics. Finally, as global fire regimes are changing and expected to intensify in the context of climate change, land use and land cover change, we suggest to put continuous effort into fire monitoring and modelling to inform the development of effective restoration strategies in the long-run.


Asunto(s)
Incendios , Incendios Forestales , Cambio Climático , Ecosistema , Bosques , Árboles
5.
J Environ Manage ; 242: 496-506, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31075644

RESUMEN

Smallholder farmers might adopt different farming practices to cope with multiple stressors depending on their livelihood assets, and with varying environmental and economic outcomes. Ongoing global change is triggering stronger and different stressors that threaten conventional farming practices; however, this could be resolved if livelihood assets that drive decision making are actionable and thus can be modified. This study assessed the influence of farmers' livelihood assets, risk perception, and shocks on the choice of non-conventional farming practices for smallholder coffee farmers in San Martín, Peru. Using household survey data, we collected data on 162 coffee plantations along an elevation gradient. We operationalized the sustainable livelihoods framework for the adoption of shade and input coffee farming strategies and explored farmers' motives to change them. Despite associated high risks with pest and disease pressure, coffee price volatility and climate change, these risks did not explain the current shade and input farming strategies. While in the past five years, farmers adapted shade and input management in response to pest and disease and climate change pressures, these occurred in diverging directions: we found higher human and social assets associated with higher shade levels, and a trend for higher physical and financial assets associated with higher input use. These findings illustrate that two main factors affect decisions on farming practices related to shade and input management and they relate to different livelihood capitals. This suggests a potential for conflicting decision-making, push-and-pulling decisions in different directions. Further the disconnect between livelihood assets and perceptions suggests that perception of risk and shocks might not be sufficient to motivate decision making under changing conditions. Such insights in decision-making typologies and drivers can inform the development of farming practices that enhance resilience and sustainability of smallholder coffee production in Peru and elsewhere in the tropics.


Asunto(s)
Agricultura , Café , Agricultores , Granjas , Humanos , Perú
6.
Carbon Balance Manag ; 9(1): 8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25264455

RESUMEN

BACKGROUND: Land use and land cover change occurring in tropical forest landscapes contributes substantially to carbon emissions. Better insights into the spatial variation of aboveground biomass is therefore needed. By means of multiple statistical tests, including geographically weighted regression, we analysed the effects of eight variables on the regional spatial variation of aboveground biomass. North and East Kalimantan were selected as the case study region; the third largest carbon emitting Indonesian provinces. RESULTS: Strong positive relationships were found between aboveground biomass and the tested variables; altitude, slope, land allocation zoning, soil type, and distance to the nearest fire, road, river and city. Furthermore, the results suggest that the regional spatial variation of aboveground biomass can be largely attributed to altitude, distance to nearest fire and land allocation zoning. CONCLUSIONS: Our study showed that in this landscape, aboveground biomass could not be explained by one single variable; the variables were interrelated, with altitude as the dominant variable. Spatial analyses should therefore integrate a variety of biophysical and anthropogenic variables to provide a better understanding of spatial variation in aboveground biomass. Efforts to minimise carbon emissions should incorporate the identified factors, by 1) the maintenance of lands with high AGB or carbon stocks, namely in the identified zones at the higher altitudes; and 2) regeneration or sustainable utilisation of lands with low AGB or carbon stocks, dependent on the regeneration capacity of the vegetation. Low aboveground biomass densities can be found in the lowlands in burned areas, and in non-forest zones and production forests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA